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Abstract

Population declines and range contractions due to habitat loss are pervasive

among nonhuman primates, with 60% of species threatened with extinction.

However, the extensive vocal activity displayed by many primates makes them

excellent candidates for passive acoustic surveys. Passive acoustic survey data

is increasingly being used to support occupancy models, which have proven to

be an efficient means of estimating both population trends and distributions.

Passive acoustic surveys can be conducted relatively quickly and at broad

scales, but efficient audio data processing has long proven elusive. The machine

learning algorithm BirdNET was originally developed for birds but was recently

expanded to include nonavian taxa. We demonstrate that BirdNET can

accurately and efficiently identify an endangered primate, the Yucatán black

howler monkey (Alouatta pigra), by sound in passive acoustic survey data

(collected in southeastern Chiapas, Mexico), enabling us to use a single‐season

occupancy model to inform further survey efforts. Importantly, we also

generated data on up to 286 co‐occurring bird species, demonstrating the

value of integrated animal sound classification tools for biodiversity surveys.

BirdNET is freely available, requires no computer science expertise to use, and

can readily be expanded to include more species (e.g., its species list recently

tripled to >3000), suggesting that passive acoustic surveys, and thus occupancy

modeling, for primate conservation could rapidly become much more accessible.

Importantly, the long history of bioacoustics in primate research has yielded a

wealth of information about their vocal behavior, which can facilitate

appropriate survey design and data interpretation.
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1 | INTRODUCTION

Assessments of range contractions and population declines feature

prominently in the IUCN's Red List criteria (IUCN, 2012), and

occupancy models have proven to be an efficient way to evaluate

these population parameters, particularly at broad spatial scales

(MacKenzie et al., 2017). Seventy‐five percent of nonhuman primate

species (hereafter “primates”) are declining and 60% are threatened

with extinction (Estrada et al., 2017), suggesting that there is an

urgent need for population assessments. Fortunately, the extensive—

and often well‐studied—vocal activity of many primates makes them

ideal candidates for passive acoustic surveys (e.g., Clink & Klinck,

2021, 2021; Do Nascimento et al., 2021; Dufourq et al., 2021; Piel

et al., 2022; Zambolli et al., 2022), which are rapidly gaining traction

as a means of generating the detection/non‐detection data required

for occupancy models (e.g., Campos‐Cerqueira & Aide, 2016; Wood

et al., 2019). Facilitating the implementation of occupancy‐oriented

passive acoustic monitoring (PAM) could be beneficial to primate

conservation globally.

Occupancy models enable researchers to account for imperfect

detection, or the failure to observe animals that are actually present.

Imperfect detection is expressed as the “detection probability” (p), or

the probability of detecting a species given that it is present, and is

used to correct for underestimates of a population (“occupancy”, ψ)

(MacKenzie et al., 2002; Tyre et al., 2003). Critically, sites must be

surveyed multiple times (called secondary sampling periods) to

estimate the detection probability. Passive acoustic surveys require

visiting sites twice: once to deploy a recording unit and once to

retrieve it, but the intervening time can be partitioned into multiple

secondary sampling periods. In contrast, human‐based surveys

require one visit to a site per survey, and the surveys themselves

tend to be quite short (e.g., Neilson et al., 2013; Vu et al., 2020) both

applied occupancy models to primate data. Conducting three or four

surveys is common, but in rugged tropical forests, conducting three

or four visits to a site for a total of 45–60min of active observation is

likely to be less efficient than a passive acoustic survey approach in

which two visits to a site can yield weeks or even months of

continuous observation. Thus, the upfront cost of passive acoustic

survey devices can be offset by substantial logistical savings, making

bioacoustics a particularly appealing approach to surveying species in

remote areas (Wood et al., 2023).

Yet throughout the field of bioacoustics, the scarcity of broadly

available and easy‐to‐use sound detection and classification tools has

consistently been a limiting factor. Collecting tens of thousands of

hours of audio is simple compared to the task of efficiently

identifying relevant sounds in that audio. Researchers interested in

using passive acoustic surveys generally face the choice of manually

reviewing their audio data, which imposes severe limits on the

quantity of data that can be processed, or developing their own

detectors, which requires a nontrivial investment of time and effort.

Machine learning algorithms have rapidly become a popular tool for

automated sound identification, with deep convolutional neural

networks (CNN) proving particularly effective. However, even

implementing a pretrained machine learning algorithm (e.g., Kong

et al., 2020) can require substantial computer science expertise.

Researchers have combined passive acoustic surveys, machine

learning sound identification tools, and occupancy modeling for

primate research (Heinicke et al., 2015; Kalan et al., 2015; Ravaglia

et al., 2023), but this promising workflow has seen limited growth—

possibly because many machine learning tools are species‐specific

and require substantive training to implement. Thus, tools created by

one research team may be difficult for other groups to use. We

present an example of an efficient and easy‐to‐use primate

vocalization detector which can readily be employed to analyze the

large audio data sets generated by large‐scale population monitoring

programs, and has the potential to include many species. In the

context of urgent threats to primate habitat and the potential for

occupancy‐oriented acoustic monitoring to provide statistically

powerful assessments of species trends and habitat associations

(Wood et al., 2019), such a framework may facilitate much needed

conservation research.

2 | DESCRIPTION

The BirdNET algorithm (Kahl et al., 2021), employs a CNN

architecture for identifying acoustic events by leveraging visual

patterns in spectrograms. Specifically, the CNN processes 3‐second

audio snippets sampled at 48 kHz (via upsampling input audio if

needed) and transforms them into linear‐scale spectrograms, from

which high‐level features are extracted using learned filter opera-

tions. A classification layer subsequently assigns logit values for each

of a fixed set of classes. A sigmoid activation function is then applied

to the classification layer's output and transforming logits into

confidence scores [0‐1], representing BirdNET's confidence that a

class is in the input audio. BirdNET is capable of detecting multiple

acoustic events in a single audio snippet, making it well‐suited for

multilabel tasks. The neural network was trained on a data set

comprising approximately 10 million audio samples, with an emphasis

on robustness to diverse noise sources and nonevents. BirdNET has

several features that may enable it to facilitate passive acoustic

surveys of primates. First, BirdNET has proven highly scalable. As the

name suggests, it was initially developed for avian applications, and

the first version could identify 984 North American and European

birds by sound alone. A recent expansion increased its capabilities to

over 3000 species, including some amphibians and mammals, notably

the Yucatán black howler monkey (Alouatta pigra). Thus, the

computational framework has proven quite capable of accommodat-

ing many new acoustic event classes, indicating that additional

training data from primates of interest could be used to further

expand its capabilities. Second, BirdNET is freely available and can be

implemented with a simple point‐and‐click graphical user interface

(https://github.com/kahst/BirdNET‐Analyzer). Using BirdNET

requires no expertise in computer science or machine learning,

although users are generally limited to the existing species list (but

see “Comparison and Critique” and McGinn et al., 2023).
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We demonstrate that audio data from passive acoustic surveys

can be analyzed with BirdNET to detect an endangered primate and

that these results can subsequently be used for occupancy modeling,

yielding results that can inform subsequent population survey efforts.

We also show that the BirdNET approach enables unified biodiversity

surveys, a major advantage over single‐species vocalization detection

tools. Rapidly generating the data needed to robustly estimate the

distribution and, over time, population trends of acoustically active

primates in an occupancy modeling framework can be a powerful tool

for conservation.

3 | EXAMPLE

3.1 | Study area and acoustic surveys

TheYucatan black howler monkey (A. pigra) is an endangered primate

(Cortes‐Ortíz et al., 2020) endemic to the Maya Forest in southeast-

ern Mexico, northern Guatemala, and Belize (Rylands et al., 2006).

Studies in the Lacandona region in Chiapas, MX have shown that this

primate is sensitive to landscape spatial changes as population

decreases are associated with reductions in forest patch size and

increases in patch isolation (Arce‐Peña et al., 2019; Arroyo‐Rodríguez

et al., 2013).

We deployed autonomous recording units (ARUs Swift Recorder,

Pelican case edition; Cornell Lab of Ornithology) in six locations, two

in southern Tabasco and four in eastern Chiapas, MX in July 2018.

The ARUs had one internal, omnidirectional microphone set to record

at a sample rate of 32 kHz, gain of +35.0 dB, and bit depth of 16 from

4:00–10:00 to 16:00–22:00 each day for 2–5 days (the recorders can

last much longer, but logistical constraints precluded longer deploy-

ments). In total we collected and analyzed 163 h of audio across 20

cumulative survey days. Passive acoustic survey locations were

chosen to reflect different disturbance and fragmentation levels of

tropical rainforest habitat inside and three nearby federal Protected

Areas: Cañón del Usumacinta, Montes Azules, and Yaxchilán

(Figure 1). These areas have been described as human‐modified

forest landscapes (Arroyo‐Rodríguez et al., 2017), as forests have

experienced rapid transformation to give way to agricultural lands,

chiefly cattle pastures and palm oil plantations (Gallardo‐Cruz et al.,

2021), as a result of directed human settlement policies that started

in the 1970s (De Vos, 2002). The ARUs were placed in the interior

of patches of tropical rainforest habitat where previous efforts of

community‐based wildlife monitoring had detected the presence of

mammals including but not limited to primates. ARUS were placed

at least 2000m apart; howler monkey vocalizations can be audible at

1000m (Schön, 1971; Schön Ybarra, 1986) so the assumption that

survey sites are independent was reasonable.

All survey efforts were entirely passive; at no point did we interact

with nonhuman primates. This work complied with the Mexican legal

requirements for primate research and the American Society of

Primatologists Principles for Ethical Treatment of Nonhuman Primates.

F IGURE 1 Six survey sites in Chiapas, Mexico. Locations were chosen to reflect different disturbance and fragmentation levels of tropical
rainforest habitat inside and nearby federal Protected Areas, with recording units placed in the interior of patches of tropical rainforest habitat
where previous efforts of community‐based wildlife monitoring had detected the presence of mammals including but not limited to primates.
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These surveys and subsequent analyses were conducted only after

receiving explicit permission to do so from local communities.

3.2 | Audio analysis with BirdNET

We analyzed the resulting audio with BirdNET. We used a species list

that included theYucatán black howler monkey and 286 birds known to

be present in our study area, but we focused our analysis on the howler

monkey results. Including nontarget species does not influence Bird-

NET's performance, but we included them to illustrate the multispecies

potential of combining passive acoustic surveys with BirdNET. Although

BirdNET can generate bird‐only species lists automatically based on

geographic coordinates provided by the user, we recommend that users

review the species list provided on GitHub and manually create a list

based on the regional species pool (https://github.com/kahst/BirdNET‐

Analyzer; 26 languages, including English and Spanish).

Briefly, BirdNET breaks input audio into 3‐second chunks and

generates a prediction for each listed species for each chunk.

BirdNET can be configured to analyze audio with up to 50% overlap

between adjacent chunks to mitigate the possibility that target

signals are not identified because they have been truncated.

However, consistent with other research on this species and other

howler monkeys (Van Belle et al., 2013; Pérez‐Granados &

Schuchmann, 2021), we found that when howler monkeys were

vocally active, they produced many sequential vocalizations such that

even if one call was truncated and thus not correctly identified, other

calls were successfully identified. Predictions with a negligible

likelihood of being correct are automatically filtered out, and

remaining predictions receive a “confidence score” from 0.0 to 1.0.

Although higher confidence scores correspond with a greater chance

that the prediction is correct, there is no direct connection to the

probability that a prediction is correct. Users could simply begin

reviewing predictions in descending score order, but a more

systematic approach is to develop probabilistic scores.

As described above, BirdNET provides “confidence scores” that

resemble probabilities insofar as they range [0‐1], but which are

merely a unitless quantification of BirdNET's confidence in its

predictions. Higher scores are more likely to be correct, but the

specifics of that relationship are species‐specific and unknown.

Fortunately, confidence scores can be translated into probabilities:

the user manually reviews a random selection of predictions and then

uses logistic regression to establish a probabilistic relationship

between the binary outcome (correct or incorrect) of a prediction

and its prediction score. Thus, a user could set a threshold, such as

80% accuracy, and review all predictions above that level.

To structure our review of BirdNET's howler monkey predictions

and gain a detailed understanding of detector performance, we

developed probabilistic scores. First, after the initial BirdNET analysis,

we used the BirdNET “segments.py” script (https://github.com/

kahst/BirdNET‐Analyzer) to randomly select 200 howler monkey

predictions across a broad range of scores (0.10–1.0) and another

200 predictions from a higher score range (0.85–1.0). Next, CW

manually validated all these predictions in Raven Pro 1.6 (K. LisaYang

Center for Conservation Bioacoustics, 2017), classifying each as

correct or incorrect.

We then back‐transformed the confidence score into its

original logit scale to use as an independent variable

( )( )logitscore = ln
confidencescore

1 − confidencescore
in the logistic regression analysis.

We used the binary outcome of all 400 validated predictions (correct

or incorrect) as a response variable and the logit‐scale prediction

score as an independent variable. There was strong support in the

data for a positive relationship between score and the probability

that a prediction was correct (AICscore model « AICnull model; intercept =

−2.54, βscore = 0.55 [SEβ = 0.06; p < 0.001]; Figure 2).

Based on the logistic regression analysis, we found that even at

the highest scores, accuracy was 0.79, meaning that BirdNET

predictions above that score had a 79% chance of being correct. If

false‐positive rates of <1%–2% cannot be achieved, substantial bias

can be introduced to occupancy models, meaning that researchers

should either use a model that explicitly accounts for false positives

(Clare et al., 2021) or manually validate detections above a given

threshold to ensure that only true positives are included in

subsequent analyses. Other machine learning‐based primate vocal-

ization detectors have also suggested manual validation as an

important post‐processing step (Kalan et al., 2015) (as opposed to

using an occupancy model that can account for false positives), and,

for a large‐scale PAM project for a threatened bird, even processing

>100,000 h of audio and validating >10,000 high‐confidence predic-

tions proved sufficiently efficient that monitoring could be conducted

annually without falling behind (Wood et al., 2020).

Increasing the score threshold to review putative detections

generally results in increased precision (fewer false positives) and

F IGURE 2 The probability of a correct BirdNET prediction
(validated predictions shown in gray) increased with prediction score.
Highest possible accuracy, estimated via logistic regression (blue line),
was 0.79, meaning that BirdNET predictions at or above that score
had a 79% chance of being correct.
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decreased recall (more false negatives, or missed detections). For

animals with extensive vocal activity, including many primates, low

recall is not necessarily a problem for occupancy modeling. First,

missing three out of five vocalizations, for example, nonetheless

means that the animal has been “detected.” Second, occupancy

models were explicitly designed to account for “missed detections”

such that failing to observe an animal even when it is present can be

accounted for statistically (MacKenzie et al., 2002; Tyre et al., 2003).

3.3 | Howler monkey results and an example
occupancy model

We manually reviewed Howler monkey predictions with a ≥70%

chance of being correct. Yucatán black howler monkeys were

recorded and correctly identified at all six locations, and on 14 of

the 20 survey days. At some sites, howler monkey vocalizations were

quite close to the recording site, at others, vocalizations were distant,

and at least one site, vocalizations of both distant and foreground

individuals were detected by BirdNET (Figure 3).

Importantly, recall (the proportion of vocalizations that are

recorded and identified) exceeded 80% across all sites. For any

acoustic signal, amplitude decreases with distance to recorder and

higher‐frequency sounds attenuate more rapidly than lower‐

frequency ones, such that both the signal‐to‐noise ratio of distant

signals and their fidelity to the original signal are reduced. None-

theless, BirdNET prediction scores were robust to howler monkey

distance from an ARU, with many distant vocalizations scoring just as

high as foreground vocalizations (e.g., Figure 3).

With just six sites, we did not have enough data to test for the

influence of any covariates on occupancy (ψ) or detection (p), and

chose to fit a null model in which both parameters (ψ and p) were

uniform across sites. Because we had manually confirmed that

howler monkeys were recorded at all six sites, we knew that

occupancy was indeed uniform and, of course, that the monkeys

were present at all locations. However, an estimate of detection

would be quite valuable, as it would enable us to design future howler

monkey surveys in this area, a priority for local communities.

Therefore, with the code below, we used the package unmarked

(Fiske & Chandler, 2011) in program R (R Core Development Team,

2020), to fit a single‐season, single‐species occupancy model. There

is extensive documentation online for unmarked and other occupancy

modeling tools.

> library(unmarked)

> # manually create our encounter histories

> monkey_data < data.frame(

rbind(

c(0, 1, 1, NA, NA), # site 1 encounter history

c(0, 1, NA, NA, NA), # site 2 encounter history

c(0, 1, 1, 0, 1), # site 3 encounter history

c(1, 1, 0, NA, NA), # site 4 encounter history

c(0, 1, 1, 1, NA), # site 5 encounter history

c(0, 1, 1, NA, NA) # site 6 encounter history

),

row.names = c("site1", "site2", "site3", "site4",

"site5", "site6")

# neither row nor column names are needed for the

encounter histories, but they can help you stay

organized)

> # note: in practice, reading in a.csv containing the

encounter histories is much simpler

> # convert the data frame to a singleseason occupancy

model format. You can add covariates at this stage

> occ_input < unmarked::unmarkedFrameOccu

(monkey_data, siteCovs = NULL, obsCovs = NULL)

> # fit a singleseason, singlespecies occupancy model

> occ_mod < unmarked::occu(~1~1,

knownOcc = seq(1,6,1),

starts= c(1, 0),

occ_input)

> # ~1~1 are the detection and occupancy formulas,

respectively.

> # (cont.) Both are uniform here, but either can be

allowed to vary with site or observation

covariates

> # knownOcc tells the model that we know all six sites

are occupied. This command is not always needed.

> # starts tells the model to start by assuming those

occupancy and detection values.

> # (cont.) Confusingly, starts asks for occupancy

then detection, in contrast to the initial

formula.

> # (cont.) If you don’t know a good starting point,

which we don’t for detection, use 0.

> occ_mod # view the results.

> # Note: we get the warning "Hessian is singular",

which occurs when there is perfect fit, such as

100% occupancy

> unmarked::backTransform(occ_mod, ’state’) # view

the occupancy estimate

> unmarked::backTransform(occ_mod, ’det’) # view

the detection estimate

F IGURE 3 BirdNET identified both the distant (0.5–2.5 s) and
foreground (5–9 s) Yucatán black Howler monkey vocalizations in this
spectrogram with extremely high confidence; compare to the long
calls described by (Briseño‐Jaramillo et al., 2017). The audio used for
that spectrogram is available in the Supporting Information: Material.
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As expected, our model generated a warning because all sites

were occupied (and with just six sites, the model has very little data

with which to estimate any parameter values). But in our case, we are

more interested in the detection estimate, which was 0.65. Detection

probability is measured at the level of a secondary sampling period, in

this case, at least 4 h of passive acoustic survey effort at either dawn

or dusk. This means that if for each day of passive acoustic survey

effort, we have a 65% chance of detecting a Yucatán black howler

monkey if one is present. An important extension of detection is the

seasonal detection probability (p*), or the probability that an animal is

observed over the entire duration of the sampling season:

p p* = 1 − (1 − ) ,n

where p is the detection probability and n is the number of secondary

sampling periods. Thus, the probability of observing a howler monkey

with a 3‐day passive acoustic survey effort would be 0.96; adding a

fourth day to the survey would increase p* to 0.98. High p is positively

related to the statistical power to detect population changes, a valuable

attribute in the context of endangered species (Wood et al., 2019).

Conducting accurate broad‐scale surveys for the Yucatán black

howler monkey could therefore be accomplished with a relatively small

up‐front investment in recording units, as long as personnel were

available to deploy and retrieve ARUs. For example, if 10 ARUs were

deployed for 4‐day periods, with two additional days required to deploy

and retrieve the units, 50 locations could be surveyed in 30 days, with

just a 2% chance of failing to detect Yucatán black howler monkeys if

they were present at one of those sites. Information about space‐, time‐,

and behavior‐specific vocalizations (Van Belle et al., 2013; Briseño‐

Jaramillo et al., 2017) could inform minimum recording unit spacing.

While occupancy estimates (ψ) would be important for population

assessments, spatial variation in detection (p) could be quite informative

because it is influenced by animal behavior (i.e., the choice of whether to

vocalize). For example, Yucatán black howler monkeys can survive and

reproduce in forest fragments, but form smaller troops than in intact

forests (Estrada et al., 2002), a difference that could result in altered

patterns of intragroup and intergroup vocal activity. Habitat‐driven

differences in vocal activity, in turn, could be manifested as model

support for a “fragmentation” covariate of p. Furthermore, although

howler monkeys are vocally active year‐round, seasonal variation in

vocal activity rates has been documented (Chiarello, 1995; Pérez‐

Granados & Schuchmann, 2021), suggesting that the detection

probability we observed in July may be higher or lower than in other

seasons. In summary, our small case study demonstrates the viability of

combining passive acoustic surveys, BirdNET‐based audio data analysis,

and occupancy modeling for Yucatán black howler monkey population

studies, and illustrates the potential for future work.

4 | COMPARISON AND CRITIQUE

Combining PAM and occupancy modeling has substantial potential to

advance primatology (Piel et al., 2022), and global primate population

declines (Estrada et al., 2017) suggest that monitoring efforts capable

of informing conservation are urgently needed. Though the use of

occupancy modeling in primatology lags behind other disciplines of

wildlife ecology (Piel et al., 2022), it is gaining traction (e.g., Almeida‐

Rocha et al., 2020; Keane et al., 2012; Vu et al., 2020). Combined

PAM and occupancy studies are more scarce (e.g., Crunchant et al.,

2020), though we are not the first to propose the PAM to machine

learning to occupancy workflow (Kalan et al., 2015). Yet the

accessibility of BirdNET as well as its proven ability to readily

accommodate new sound classes in its identification repertoire, as

well as the growing global capacity for bioacoustic research, suggest

that rapid growth in primate population monitoring may be possible.

With both a graphical user interface and command line

implementation options (https://github.com/kahst/BirdNET‐

Analyzer), BirdNET is a relatively user‐friendly tool. However,

classification performance is known to vary among species, and

careful testing of the performance of newly added phylogenetic

classes (e.g., Mammalia) is warranted for. Indeed, the global

performance metrics, which are dominated by birds, may not be

particularly informative. We found that BirdNET achieved high recall

in our data set, meaning that most howler monkey vocalizations were

identified as such. Furthermore, it was able to identify vocalizations

produced near to and far from the ARU with high confidence (e.g.,

Figure 3). With an estimated maximum accuracy of 0.79 (Figure 2),

however, reducing false positive rates would be beneficial. Improving

the quality of training data, likely by increasing the quantity of tightly

cropped recordings that contain only the target vocalization, as well

as examples of nontarget soundscape examples, should increase

precision (reduce false positives).

A lack of training data for additional primate species is currently

the biggest limitation of BirdNET. At present, the Yucatán black

howler monkey is the only primate in BirdNET. Incorporating this

species proved to be a straightforward extension of standard,

periodic improvements to the model, which suggests that training

BirdNET on additional primate sounds would be similarly simple.

There are at least three solutions to the challenge of “missing

species.” First, researchers can use BirdNET feature embeddings as a

means of querying the audio for sounds of interest (see case study

two in McGinn et al., 2023). In short, CNNs like BirdNET can be easily

modified to provide their feature embeddings, which are vectors of

numbers that characterize an input, in this case a 3‐second chunk of

audio (for BirdNET, feature embeddings can be generated using the

“embeddings.py” script available on GitHub). Feature embeddings

thus allow researchers to compare the multivariate distance among

segments of audio, and this approach has been used to successfully

identify target sounds in large audio datasets (McGinn et al., 2023).

Thus, with just one example of a target sound, such as the

vocalization of a primate that BirdNET has not been trained to

identify, researchers could search for other such sounds in their data.

Second, rapid advances in transfer learning suggest that researchers

could use a new update to the BirdNET graphical user interface

(available on GitHub) to retrain BirdNET to detect a sound of interest.

(Transfer learning is the application of a pretrained classifier to the

identification of a new, previously unknown class, such as another
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primate in this case.) Thus, researchers may not need to wait for

updated versions of BirdNET or resort to multivariate analyses to use

BirdNET to identify species that are not already in the classifier but

for which they have training data. Third, we encourage researchers

with labelled audio samples of a species of interest to make

annotated audio data publicly available with archives such as xeno‐

canto (https://xeno‐canto.org/) or ecoSound‐web (Darras et al.,

2023). Many primates have diverse vocal repertoires and although

BirdNET has proven capable of identifying many bird species on the

basis of multiple very different sounds, prioritizing stereotyped

vocalizations used for long‐range communication is likely to be the

most efficient path forward.

Other detectors may be more suitable for primate detection than

BirdNET, and several are available (e.g., Clink & Klinck, 2019;

Dufourq et al., 2021; Heinicke et al., 2015). The potentially

substantial acoustic repertoires of some primates may warrant

customized signal detection and classification solutions. However,

there is increasing evidence that the architecture of CNNs may be

less important to performance than post‐processing steps (Kahl et al.,

2017). Thus, we encourage researchers to conduct detailed analyses

of detector prediction performance, potentially by expanding the

logistic regression approach we demonstrated to include covariates

that could affect performance. If the detector recognizes multiple

vocalization types, prediction accuracy could differ among types;

accuracy could also be influenced by seasonal or spatial variation in

the soundscape. In these or other cases, the logistic regression

equation might not be a simple univariate model relating outcome to

score, but one that relates outcome to score, vocalization type, and

habitat, for example. Importantly, occupancy modeling was specifi-

cally designed to account for missed observations. An animal may be

silent during a passive acoustic survey or a detector may fail to

identify a target vocalization; these possibilities are not particularly

problematic in an occupancy modeling framework, and their

cumulative effect can be measured directly via detection probability.

Previous research on primate vocal activity can help researchers

optimize study design, including the duration of secondary sampling

periods and daily recording schedules. For example, vocal activity

rates have been well‐studied for many species of howler monkey

(Van Belle et al., 2013; Chiarello, 1995; Do Nascimento et al., 2021;

Pérez‐Granados & Schuchmann, 2021), as well as gibbons (Cl et al.,

2020), lemurs (Batist et al., 2022), and others. Understanding

temporal variation in vocal activity enables researchers to make

informed decisions about the appropriate duration of their secondary

sampling periods (i.e., the intervals that constitute the repeated visits

to a site, whether they are discrete deployments or subsets of a

single longer deployment). Simulation‐based power analyses based

on realistic vocal activity rates and population parameters and on

preliminary field data can further improve study design (Wood

et al., 2021).

In the context of conducting broad‐scale passive acoustic

surveys to assess primate distribution, habitat associations, and, over

time, population trends, efficient conversion of raw audio to

detection/non‐detection data is essential. Yet the process of defining

“detections” can be complex (Wood & Peery, 2022). Recording a

species just once may be an inappropriate definition, particularly

because high‐amplitude, low‐frequency primate vocalizations can

travel many hundreds of meters. Indeed, in our data, vocal activity at

was equally extensive at two sites, but was quite distant from one

ARU and quite close to the other. Moreover, there may be substantial

variation in the levels of acoustic activity among “occupied” sites,

which may be a function of the distance between an ARU and a

hotspot of primate activity. Fortunately, passively recorded audio can

contain vastly more information about a species than simply whether

an individual was present and vocally active at a given place and time.

A wide range of techniques may help researchers convert

primate vocalizations located in passively recorded audio into

ecologically informative inputs for subsequent applications. An

amplitude‐based criterion could be used to count sites as “occupied”

only if vocalizations are relatively close to the ARU, though even with

data about source volume, distance could be difficult to estimate

because of the multitude of factors that can affect sound propaga-

tion. Moving beyond binary site classifications (detected or not

detected) is also possible with multistate occupancy models (Nichols

et al., 2007), an approach that can improve the level of ecological

detail obtained from passive acoustic datasets (Reid et al., 2021;

Wood et al., 2020). The “state” of a site at which the focal species is

present could be determined by the number of individuals for

particularly social primates, something that can be determined

acoustically (Torti et al., 2018), or by vocalizations that are unique

to sex or age class. Feature embeddings can help distinguish

vocalization types within species. McGinn et al. (2023) demonstrated

that adult and juvenile vocalizations of the same species could be

accurately grouped using multivariate distance metrics derived from

BirdNET's feature embeddings.

Importantly, passive acoustic surveys designed for occupancy‐

oriented population modeling by no means preclude analyses of

animal behavior, including intraspecific communication and group

size (e.g., Torti et al., 2018) and interspecific interactions (Wood et al.,

2020). Even in our relatively small data set, we detected examples of

a howler monkey far from the ARU calling and one much closer

responding (Figure 3). Follow‐up surveys to provide even a general

estimate detection range would be a valuable piece of future

monitoring for this species. Population density estimation may also

be a valuable objective, and passive acoustic surveys have proven to

be a viable means of conducting such work (Markolf et al., 2022;

Stevenson et al., 2021). With a multispecies detector like BirdNET,

interspecific acoustic interactions among primates (and other

acoustically active species) could also be studied. Perhaps the most

detailed piece of information is individual identity, and acoustic‐

based identification of primates has been successful for some species

(Clink & Klinck, 2021). Individual identification could improve

occupancy modeling, for example, by helping researchers avoid

treating two sites as occupied when really one individual was

recorded at both, but it could also help monitoring efforts move

beyond occupancy modeling entirely, instead implementing acoustic‐

based mark‐recapture monitoring or even localized censuses.
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Ongoing threats to tropical forests are driven by complex,

rapidly changing interactions between local and global economic

forces, changing temperatures, precipitation patterns, and fire

regimes and associated feedback loops, and even political dynamics

(Austin et al., 2017; Brancalion et al., 2020; Ruggiero et al., 2021;

Seymour & Harris, 2019). Obtaining or maintaining an under-

standing of species responses to these changes is likely to require

broad‐scale survey efforts, ideally ones capable of yielding data on

multiple species. Although primates are particularly threatened

(Estrada et al., 2017), tropical biodiversity as a whole is at risk as

well (Symes et al., 2018). The combination of passive acoustic

surveys and multi‐species sound identification tools like BirdNET

may support holistic conservation efforts for vocally active species.

For example, we scanned our audio data for howler monkeys, and

for 286 birds known to be present in our study area. Results of

interest (primate vocalizations) were partitioned and analyzed in

depth, while putative detections of birds (and possibly amphibians

and insects) can be reviewed later or shared with collaborators. The

ability to generate taxonomically broad data with a single sound

identification tool is an ancillary benefit of further developing

BirdNET for primate research, albeit an important one. In the Sierra

Nevada, USA, concerns about the status of the charismatic spotted

owl (Strix occidentalis) justified investment in a large‐scale PAM

program that now enables population monitoring of the entire avian

community; as flagship species, primates may have a similar

incidental umbrella effect. With careful survey design and continued

development of machine learning sound identification tools, PAM

projects designed to provide broad‐scale population data about

primates can also provide equally rigorous population estimates

about many other species.
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