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ABSTRACT
Passive acoustic monitoring has proven effective for broad-scale 
population surveys of acoustically active species, making it 
a valuable tool for conserving threatened species. However, suc-
cessful automated classification of anuran vocalisations in large 
audio datasets has been limited. We deployed five autonomous 
recording units at three known breeding areas of the Yosemite toad 
(Anaxyrus canorus), which is threatened and relatively uncommon, 
and the sympatric Pacific chorus frog (Pseudacris regilla), which is 
widespread and more common, to test the viability of bioacoustics 
as a means of supplementing ongoing, human survey efforts. We 
analysed the audio data with the BirdNET algorithm, which was 
originally developed for birds but has been expanded to include 
both species. We achieved efficient and accurate identification of 
both species in 2,756 h of audio, which yielded high-resolution 
phenological data about seasonal and daily vocal activity as well 
as daily detection counts. These findings demonstrate that a newly 
expanded machine learning detector, BirdNET, can effectively pro-
cess passive acoustic surveys for these species. Further exploration 
of how passive acoustic monitoring may complement existing 
survey techniques for these and other Anurans is warranted.
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Introduction

Amphibians are globally threatened, with many species declining precipitously 
(McCallum 2007; Sodhi et al. 2008; Grant et al. 2020). There is thus an urgent need to 
identify, understand, and address drivers of population decline. Yet the cryptic nature of 
many amphibians has posed a persistent challenge to population studies. Bioacoustics 
has emerged as a powerful survey tool for vocally active species, enabling researchers to 
leverage occupancy-oriented surveys of threatened species to study their behaviour and 
interspecific interactions, and even differentiate individuals (Campos-Cerqueira et al.  
2016; Wood et al. 2020; Bolitho et al. 2021). Vocal activity is widespread among anurans 
and bioacoustic approaches are increasingly being used for amphibian conservation 
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research (Measey et al. 2017; Wijayathilaka et al. 2018; Bolitho et al. 2021). However, the 
development of tools to facilitate efficient processing of passive acoustic survey data via 
automated detectors has been limited but see (Noda et al. 2016; Lapp et al. 2021; Akbal 
et al. 2023), in part because the development of species-specific detectors is very time- 
consuming and performance is sensitive to detector settings (Crump and Houlahan  
2017). The expansion of easy-to-use animal sound detectors could facilitate the growth 
of bioacoustics as a tool for anuran research and conservation.

A truly scalable acoustic survey approach low-cost autonomous recording units 
(ARUs) and a computer-assisted signal detection and classification tool to determine 
where and when a species of interest has (or has not) been vocally active in an audio 
dataset that could contain thousands or tens of thousands of hours. Aurans are typically 
vocally active when breeding, and ARUs can be deployed before the breeding period 
begins and programmed to record continuously or at designated intervals. Recording 
many thousands of hours of audio is relatively easy; efficiently determining whether the 
vocalisation of a species of interest has been recorded in a large quantity of audio is 
challenging. Manual review of audio is time-consuming and quickly becomes impossible 
to conduct at scale. Custom detectors can be developed using spectrogram cross- 
correlation (e.g. the template detector in Raven Pro 2.0 (Arvind et al. 2022)), Hidden 
Markov Models (e.g. Sound Scope (Crump and Houlahan 2017)), or with amplitude- 
based pulse rate detectors (Lapp et al. 2021). However, cross-correlation tools and 
Hidden Markov Models can be extremely sensitive to both recording settings (e.g. sample 
rate) and tool settings (Crump and Houlahan 2017), while pulse rate detectors rely on 
relative metrics that are unique to each ARU and thus limit the scalability of the tool. 
Machine learning detectors are gaining traction (e.g. (Noda et al. 2016; Akbal et al.  
2023)), and one such tool, the BirdNET algorithm (Kahl et al. 2021), requires no 
computer science expertise, is freely available, and has recently been expanded to identify 
some amphibians by sound.

We conducted a small-scale test of whether passive acoustic surveys and BirdNET 
sound analysis could be combined to efficiently identify two vocally active anurans, the US 
federally threatened Yosemite toad (Anaxyrus canorus) and the more common Pacific 
chorus frog (Pseudacris regilla or P. sierra; see (Recuero et al. 2006; Barrow et al. 2014)). 
The Yosemite toad is endemic to high elevations (>1,980 m asl) in the central Sierra 
Nevada, USA, whereas the sympatric Pacific chorus frog is more widely distributed 
throughout the western USA and southwestern Canada. In the Sierra Nevada, both species 
are explosive breeders that emerge at snowmelt when adult males form breeding choruses 
for relatively short periods (~2 weeks). Both species can readily be identified by sound 
despite nearly simultaneous breeding (Figure 1(a)). After breeding, adults disperse into the 
surrounding uplands (Liang 2013). Landscape genetic surveys have provided data about 
effective population size (e.g. (Wang 2012; Maier et al. 2022)), and the inaccessibility of 
most breeding sites when adults are present has forced bioregional monitoring efforts to 
rely on post-breeding occupancy surveys for tadpoles and metamorphs conducted over 
a 6–8-week period when breeding sites are accessible (Brown et al. 2012; Brown and Olsen  
2013). Thus, little information is known about annual changes in adult populations across 
the toad’s range. Passive acoustic surveys could provide information about breeding 
phenology and potentially adult male population sizes (only males are vocally active), 
but the viability of bioacoustic monitoring has not been evaluated. Therefore, we deployed 
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five ARUs across three sites known to be occupied by Yosemite toads and Pacific chorus 
frogs to evaluate: 1) the efficacy of passive acoustic surveys and the newly expanded 
BirdNET algorithm as a survey method for sympatric amphibian species, and 2) the fine- 
scale spatiotemporal variation in both species’ vocal activity. If passive acoustic monitoring 
and emerging machine learning tools yield reliable estimates of vocal activity, they could 
support anuran research and conservation for both at-risk and common species.

Materials and methods

Field methods

We deployed five ARUs (SwiftOne Recorder, rugged edition, K. Lisa Yang Center for 
Conservation Bioacoustics, Cornell Lab of Ornithology, New York, USA) at three known 

Figure 1. After scanning 2,756 hours of passively recorded audio with the BirdNET algorithm, we 
manually validated randomly selected BirdNET predictions of Yosemite toads and Pacific chorus frogs 
(a); related prediction outcome (correct/incorrect) to prediction score via logistic regression to set 
probabilistic score thresholds (b); and tested the sensitivity to patterns in daily vocalisation counts to 
different score thresholds (c). In the spectrogram (a), a foreground Yosemite toad is shown in box 1 
and a second, more distant individual begins calling at about 1.6 seconds; these exemplify the 1– 
5-second trills which adult males produce during the breeding season. A foreground Pacific chorus 
frog is shown in box 2.1; adult males will spend several hours producing these brief calls, which 
collectively form the background chorus of many individuals is shown in box 2.2. BirdNET correctly 
identified both species in this audio clip. In the logistic regression plot (b), the logistic curve relating 
BirdNET score to prediction outcome is shown in red. Each panel in the bottom row (c) represents data 
from a recording unit deployed at a 9.9 ha breeding area (Site 1).
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breeding areas of Yosemite toads on lands managed by the Sierra, Humboldt-Toiyabe, 
and Stanislaus National Forests (Sites 1, 2, and 3 respectively; Table 1). The breeding 
areas were 25–150 km apart; previous surveys suggest Site 1 had 20–25 adult male 
Yosemite toads, while the other two sites had 5–15. At each breeding area, we chose 
the deployment locations based on our knowledge of where Yosemite toad breeding had 
occurred in the previous year; Site 1 had three ARUs, which were 190–360 m apart 
(Table 2). Initial deployments were made on March 30 – 2 April 2021, and follow-up 
visits were made in early May to resolve a minor glitch in the ARU recording schedules.

The Yosemite toad was the priority species, rather than the Pacific chorus frog, so we 
designed our recording schedule to focus on that species. The adult male Yosemite toad calls 
diurnally during their two-week breeding season so we programmed our ARUs to record 
daytime hours (06:00–17:00 PDT) and two hours in the evening (21:00–23:00 PDT) to record 
the more nocturnally active chorus frog (similarly, adult males are vocally active during their 
2–3-week breeding season) and because we have documented Yosemite toad calling during 
evening hours (C. Brown unpubl data). All ARUs recorded daily at a sample rate of 32 kHz 
(microphone gain+32 dB, bit depth 16). Battery power constraints precluded continuous 
recording, although this would have allowed for more detailed temporal analyses.

Qualitative range tests of these ARUS suggested that if either species was audible to 
members of the field team, it could also be recorded with sufficient clarity to be reliably 
identified. For the Yosemite toad, this was 10–50 m, but for both human and machine 
observers, the effective range is a function of the signal to noise ratio, which will vary with 
vegetation, weather, and other factors, such that it varies continuously over time.

Bioacoustic data preparation

We analysed the audio using the BirdNET algorithm, a deep artificial network initially 
developed to identify and classify bird sounds (see (Kahl et al. 2021) and https://github. 
com/kahst/BirdNET-Analyzer for further detail). The algorithm was recently expanded from 
984 bird species to >3,000 species, including the Yosemite toad and Pacific chorus frog. 
BirdNET analyses input audio in 3-s chunks (e.g. Figure 1(a)) and generates a unitless 

Table 1. Breeding site and ARU deployment metadata, and vocal activity data for both species.
Vocal Activity

ARU Deployment Yosemite toad Pacific chorus frog

Site Area (ha) Elevation (m) n Start End Peak End Peak End

1 9.9 2774 3 14 May 16 June 30 May 8 June
2 0.5 2768 1 11 May 25 June 13 May 31 May 13 May 31 May
3 1.3 2621 1 18 May 1 July 31 May 9 June 30 May 26 June

Table 2. Pairwise distance (m) and Pearson’s correlation (r) between daily detection counts among 
recording units at Site 1.

Distance (m) r (Yosemite Toad) r (Pacific Chorus Frog)

Unit 3 Unit 2 Unit 3 Unit 2 Unit 3 Unit 2

Unit 1 346 361 0.895 0.892 0.894 0.903
Unit 2 193 0.852 0.970
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numeric prediction score for each target species. We converted BirdNET’s ‘confidence’ score 
to its original logit scale via: 

Logit score ¼ 1= 1 � confidence scoreð Þ (1) 

To determine a BirdNET score threshold that could be consistent for both species, 
we generated two sets of validation data: we randomly selected 20 h of audio to 
manually review and we used the ‘segments.py’ script to randomly select indivi-
dual BirdNET predictions; collectively this yielded almost 4,600 selected BirdNET 
predictions spanning the range of dates, times, and locations within our study 
(nYosemite toad = 1,995; nPacific chorus frog = 2,603), and manually validated each one. 
For each species, we then used logistic regression to relate the BirdNET prediction 
score to the binary outcome of the validation process (correct/incorrect), yielding 
an equation that allowed us to convert BirdNET scores to the probability that any 
given prediction is correct (Figure 1(b)). For Yosemite toads and Pacific chorus 
frogs, those equations were: 

logitðpYosemite toadÞ ¼ 0:307þ βscore � 0:387 (2) 

and 

logitðpPacific chorus frogÞ ¼ 2:187þ βscore � 0:621 (3) 

respectively.
We solved each species’ logistic regression equation for prediction score thresh-

olds that would yield a pr(true positive) rates of 80%, 85%, 90%, 95%, and 99%, 
and applied those thresholds to daily detection count data to test the sensitivity of 
overall patterns in vocal activity (i.e. relative peaks and troughs) to different score 
thresholds (Figure 1(c)). Finally, we used the validation dataset to estimate pre-
cision (the proportion of predictions above a given threshold that are correct) and 
recall (the proportion of observed vocalisations that are correctly identified at 
a given threshold) for the probabilistic score threshold we selected for our 
analyses.

Analyses of vocal activity

We applied the species-specific score threshold required to achieve 85% accuracy to the 
BirdNET outputs and tested for spatiotemporal patterns in vocal activity of both species. 
First, for all five ARUs across the three breeding sites, we summarised the daily and hourly 
variation in vocal activity of both species to identify phenological patterns, notably the 
seasonal peak and termination of vocal activity, and to identify diel patterns of vocal activity. 
Second, we tested for spatial variation in vocal activity across the three ARUs deployed at Site 
1, a single large breeding area. We compared variation in daily detection counts among the 
different ARUs over time, and by computing the pairwise Pearson’s correlation between daily 
detections at the three ARUs.
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Results

Detector performance

In total, we collected 2,756 h of audio. BirdNET was highly effective at identifying both 
species of interest. We chose an 85% accuracy threshold because it minimised the 
possibility of false positives for both species: at that level, precision was 0.99 and 0.89 
for Yosemite toads and Pacific chorus frogs, respectively. Recall varied much more 
between species at the 85% accuracy threshold, with an estimated recall of just 0.19 for 
the Yosemite toad but 0.98 for the Pacific chorus frog. Despite relatively low recall for the 
Yosemite toad, observed patterns in vocal activity were robust to the score threshold 
(Figure 1(c)): probabilistic thresholds from 80% to 95% accuracy yielded the same 
relative peaks and troughs in vocal activity, though, of course, observed detection counts 
decreased as the threshold increased.

Temporal variation

Across all sites, both species exhibited seasonal (Table 1; Figure 2) and diel (Figure 3) 
peaks in vocal activity. At Sites 1 and 2, both species were vocalising on the first day of 
recording, but substantial increases in daily detection counts in subsequent days sug-
gested that vocal activity was just beginning for the season. Peak vocal activity dates 
different by more than 2 weeks across sites (Table 1), and daily vocal activity rates for 
both species had multiple peaks and troughs across sites (Figure 2). Across all five ARUs 
(three of which were at Site 1), Yosemite toad vocal activity peaked at midday and had 
a minor peak between 21:00–22:00; Pacific chorus frog vocal activity had minor peaks 
between 10:00–11:00 and 16:00–17:00, then tripled between 21:00–23:00 (Figure 3). The 
ARUs were not recording 17:00–21:00.

Spatial variation

Daily detection counts of Yosemite toads at Site 1 were highly correlated among the three 
ARUs (r = 0.852–0.895; Table 2; Figure 2, solid lines), though the variation in counts 
among units could be quite high (e.g. on 11 May, there were 5,777 detections at Unit 1, 
4,419 more than at Unit 2). Daily detection counts of Pacific chorus frogs were even more 
correlated (r = 0.894–0.970; Table 1; Figure 2, solid lines). Although the absolute magni-
tude of the differences among units at Site 1 was similar to what we observed for 
Yosemite toads, the greater overall detection counts meant that the proportional differ-
ences in detection counts of Pacific chorus frog was smaller (e.g. twice as many detections 
at one unit vs another, as opposed to four or five times as many detections).

Discussion

Identifying target signals in many thousands of hours of audio has long been a limiting 
factor in passive acoustic monitoring. We have successfully expanded BirdNET, which 
was originally designed to identify birds, to reliably and efficiently detect Yosemite toads 
and Pacific chorus frogs, even when they vocalise simultaneously. Thus, the combination 
of passive acoustic monitoring and this new machine learning animal sound 
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identification tool can be a scalable means of providing precise phenological data about 
vocal activity and detection counts for either or both species. Furthermore, Wood et al. 
(2023) outline several possibilities for scaling up passive acoustic survey coverage despite 
the challenges associated with accessing remote breeding areas in difficult terrain.

Despite ARU deployments that did not span the entire breeding season, we 
observed relative peaks in vocal activity for both species at all three sites, which 
may help provide insights into breeding phenology and its relationship to climate – 
a connection that is considered a global priority in amphibian conservation (Grant 
et al. 2020). Although Sites 1 and 2 are nearly 150 km apart, their snow depth was 
similar in 2021 suggesting similar snowmelt timing, which may explain the similarity 
of their peaks of vocal activity (Table 1). With greater spatial coverage of acoustic 
surveys, including pre-breeding ARU deployments (Wood et al. 2023), 

Figure 2. Daily vocalisation counts of Yosemite toads and Pacific chorus frogs at known breeding sites 
of Yosemite toads in the central Sierra Nevada, USA. Data were collected between 06:00–17:00 and 
21:00–23:00 every day.
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a comprehensive understanding of range-wide breeding phenology could be obtained. 
Understanding changes in breeding phenology, as well as diel shifts in vocal activity, 
could improve our understanding of how climate-linked environmental factors like 
drought and temperature are affecting Yosemite toad and Pacific chorus frog popula-
tions (Blaustein et al. 2001; Walpole et al. 2012). For example, there were 2 days with 
an unexpected absence of vocal activity at Sites 1 and 2 (20, 21 May; Figure 2). 
Manual review of this audio confirmed that there was indeed no anuran vocal activity 
and that high winds were present. Regional weather archives indicate that tempera-
ture lows dropped from ~2.8–6.0°C to ~ −6.5° during those days, suggesting that the 
animals – like most other amphibians – display seasonal and daily responses to 
environmental conditions (Vitt and Caldwell 2014).

Long-duration recordings provide an opportunity to learn more about species’ natural 
history and interactions. Consistent with the acoustic niche hypothesis, sympatric anur-
ans tend to vocalise simultaneously but in different frequency bands (Villanueva-Rivera  
2014), as do the Yosemite toad and Pacific chorus frog (Figure 1(a)). Although Yosemite 
toads are generally diurnal, we recorded substantial night-time vocal activity; while 
Pacific chorus frogs are generally nocturnal, we recorded them calling during the day 
(Figure 2). Neither species exhibited vocal activity from 6:00 to 9:00, when temperatures 
were likely too cold (Vitt and Caldwell 2014), but recording the dawn chorus for a week 
or more could enable reliable bioacoustic assessments of avian diversity (Wood et al.  
2021) as an ancillary benefit of anuran-oriented survey efforts. Further research into 
temporal patterns of vocal activity of both species is warranted and would be supported 
by continuous recording data, as opposed to the periodic schedule we used.

Figure 3. Per-hour counts of Yosemite toad (solid line, left axis) and Pacific chorus frog (dashed line, 
right axis) vocalisations summed across all days and all units (2,756 hours).
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However, applying BirdNET (and likely other machine learning tools) to amphibian 
research may be challenged by simultaneous vocal activity. Convolutional neural net-
works like BirdNET are not sensitive to sound outside the frequency band of the target 
signal, but they can be highly sensitive to poorly labelled training data. The vocalisations 
of highly abundant chorusing frogs (e.g. Pacific chorus frog in our case and spring peeper 
[P. crucifer] in eastern North America) are likely to be in the background of recordings of 
less common sympatric species. If training data for species A contains the vocalisations of 
B but is only labelled as species B, the detector will begin to identify the vocalisations of 
species B as species A. High-scoring false positives (misclassifications of B as A) will 
necessitate higher score thresholds for species A, meaning that high precision will result 
in low recall. In our case, achieving pr(true positive) ≥0.85 for the Yosemite toad required 
a substantially higher BirdNET score than it did for the Pacific chorus frog (see the 
intercepts in Equations 2 and 3), which almost certainly drove the lower recall achieved 
by the former species at the same probabilistic score threshold. Thus, species with low 
population densities may be difficult to detect by virtue of their scarcity – an added 
challenge for threatened species. Therefore, we recommend that researchers developing 
machine learning tools for amphibians, or those improving existing tools like BirdNET, 
take the following steps for training data: tightly crop training data in time to focus on 
target signals, and use multi-label data when multiple species are present. For common 
species, simultaneous conspecific vocalisations may also be a challenge because the sound 
of an individual and the emergent sound of a group chorus can differ substantially, 
though BirdNET was able to identify both individual foreground Pacific chorus frogs and 
their background chorusing with high confidence (e.g. Figure 1(a) 2.1 and 2.2, respec-
tively). Therefore, we offer a third recommendation for training data: include both 
individual (foreground) and chorus (background) examples where applicable.

Differential recall among species, as we observed (0.19 and 0.98 for the Yosemite toad 
and Pacific chorus frog, respectively) means that Yosemite toad detection counts were 
more substantially underestimated than those of the Pacific chorus frog. However, the 
importance of low recall depends on research goals. In the context of a broad-scale, 
occupancy-based monitoring program targeting species who are likely to vocalise many 
times during an ARU deployment, low call-based recall is not problematic as long as the 
species is correctly identified at a given site (Wood et al. 2019). If detection counts are 
important (e.g. (Pérez‐granados and Traba 2021)), low recall may be more problematic. 
As we demonstrated, a consistent threshold could be applied and count-based analyses 
could be conducted with appropriate limitations, such as not comparing species with 
different recall rates. In this case, developing a probabilistic threshold is highly recom-
mended because it provides a concrete, quantitative assessment of the likely error in the 
counts. We recommend our validation approach to other researchers (manually validate 
random samples, use logistic regression to relate BirdNET prediction score to the 
probability that a prediction is correct); however, the particular coefficients of our 
regression models (Equations (2) and (3)) are unique to our audio dataset. 
Alternatively, an automated detector could be used to identify the approximate periods 
of vocal activity, and manual review and annotation could then be used to identify all 
vocalisations.

Spatial variation in both species’ vocal activity was evident at Site 1, where we had 
three ARUs. Daily detection counts were highly correlated among our three ARUs 
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(r = 0.852–0.970; Table 2) but the counts themselves varied substantially (Figure 2). The 
Site 1 breeding area is relatively large and melts out in stages, and Yosemite toad 
breeding, and thus calling, follows the melt-out. Nonetheless, even daily detection counts 
varied substantially, suggesting that the ARUs were not sampling all the same individuals, 
though overlap is certainly possible (Figure 2). The potential sensitivity of acoustic 
detection count to ARU placement has important implications. First, whenever possible, 
placement of ARUs should be informed by existing information about within-meadow 
breeding locations. The distance between an ARU and known breeding pools may be an 
important covariate in count-based models. Second, detailed, species-specific assess-
ments of the ARU’s listening range will be essential to estimating the sampling coverage 
of each unit and, thus, determining how many ARUs may be necessary to obtain 
comprehensive acoustic survey coverage of a breeding site. Third, large breeding mea-
dows, such as Site 1, may need multiple ARUs to ensure comprehensive acoustic survey 
coverage, necessitating some form of integration across ARUs at a given meadow.

We demonstrated that passive acoustic surveys and a newly expanded machine 
learning tool, the BirdNET algorithm (Kahl et al. 2021), can be used to effectively 
survey adult male Yosemite toad and Pacific chorus frog populations. High 
temporal resolution phenological data can be obtained, with options ranging 
from seasonal patterns to hourly or even minute-by-minute analyses. Patterns in 
detection counts may also be quite valuable. Already, high-density ARU arrays 
have been used to estimate amphibian density (e.g. (Measey et al. 2017)), and 
detection counts from moderate- and low-density deployments, in which ARUs do 
not overlap in their recording coverage, have been used to estimate density and 
abundance for birds (Pérez‐granados and Traba 2021). If metrics of acoustic 
activity (e.g. maximum daily or hourly detection count) could be calibrated with 
mark-recapture abundance estimates, the possibility of landscape-scale bioacoustic 
estimates of adult male abundance could be explored as a complement to ongoing 
occupancy-based surveys and genetic assessments (Brown et al. 2012; Brown and 
Olsen 2013; Maier et al. 2022). Our study underscored the multi-species capabil-
ities of passive acoustic surveys and machine learning tools, as well as the potential 
for passive acoustic surveys to yield a wide variety of data, such as phenology, 
interspecific interactions, and potentially abundance (Wood et al. 2019, 2020). 
More importantly, we demonstrate the viability of bioacoustics as a research tool 
to aid in the conservation of a declining species, and the monitoring of many 
other threatened amphibians.
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