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Abstract
Passive acoustic monitoring has emerged as a scalable, noninvasive tool for monitoring many acoustically active animals. 
Bioacoustics has long been employed to study wolves and coyotes, but the process of extracting relevant signals (e.g., territo-
rial vocalizations) from large audio datasets remains a substantial limitation. The BirdNET algorithm is a machine learning 
tool originally designed to identify birds by sound, but it was recently expanded to include gray wolves (Canis lupus) and 
coyotes (C. latrans). We used BirdNET to analyze 10,500 h of passively recorded audio from the northern Sierra Nevada, 
USA, in which both species are known to occur. For wolves, real-world precision was low, but recall was high; careful 
post-processing of results may be necessary for an efficient workflow. For coyotes, recall and precision were high. BirdNET 
enabled us to identify wolves, coyotes, and apparent intra- and interspecific acoustic interactions. Because BirdNET is freely 
available and requires no computer science expertise to use, it may facilitate the application of passive acoustic surveys to 
the research and management of wolves and coyotes, two species with continental distributions that are frequently involved 
in high-profile and sometimes contention management decisions.
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Introduction

As a globally distributed apex predator that can radically 
influence entire ecosystems (Estes et al. 2011) and inspire 
human emotions ranging from fear to reverence, wolves have 
been the subject of human inquiry for millennia. In contrast, 
although Coyote features prominently in Indigenous North 
American mythology, coyotes are widely regarded as a pest 
in contemporary American society. Yet the widespread 
extermination of North American apex predators has facili-
tated a continental-scale expansion of coyotes—an event 
with potentially significant implications for biodiversity 

across the Americas (Prugh et al. 2009; Levi and Wilm-
ers 2012; Hody and Kays 2018). The return of wolves to 
some parts of their range has revealed complex competi-
tive dynamics (Merkle et al. 2009), while potential modes 
of coexistence, such as partitioning of space (Benson and 
Patterson 2013) or time, are threatened by habitat loss and 
human activity (Gaynor et al. 2018), respectively. A range of 
invasive and noninvasive techniques have been used in the 
study and management of these and other canids, but their 
typically nocturnal and wide-ranging behavior has posed a 
persistent challenge (Blanco and Cortés 2012). However, 
their extensive use of vocal communication makes them 
excellent candidates for passive acoustic monitoring (PAM).

Indeed, PAM has been applied to canid research (e.g., Suter 
et al. 2017; Shoemaker and Miles 2020; Sadhukhan et al. 
2021). The vocalizations employed by wolves and coyotes 
for long-range communication tend to be the target signals: 
gray wolves tend to produce long (6–10 s), low-frequency 
(300–600 Hz) howls with relatively little frequency modula-
tion (e.g., Fig. 1, bottom spectrogram; Fig. 2, middle spec-
trogram); in contrast, coyotes tend to produce shorter (3–5 s) 
howls at higher frequencies with much greater modulation 
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(500–1500 Hz) (e.g., Fig. 1, top spectrogram; Fig. 2, bottom 
spectrogram). PAM can be less expensive and more efficient 
than other methods (Garland et al. 2020). However, identifying 
the target vocalizations in large audio datasets amassed via the 
deployment of autonomous recording units (ARUs) remains a 
time-intensive task (Suter et al. 2017; Gibb et al. 2019).

Machine learning algorithms have proven highly effec-
tive at animal sound identification in large audio datasets, 
though most efforts to date have focused on birds. Auto-
mated identification of wolf howls in PAM data using such 
algorithms has been demonstrated with captive animals 
(Stähli et al. 2022) but has not yet been applied to wild 
populations and remains inaccessible to those without 

computer science expertise. The BirdNET algorithm is a 
deep convolutional neural network originally designed to 
identify birds by sound (Kahl et al. 2021); it was recently 
expanded to include > 6000 species, including the gray 
wolf, coyote, and domestic dog. Critically, BirdNET is 
freely available and requires no computer science exper-
tise to use. Using a case study from the northern Sierra 
Nevada, USA, we demonstrate that BirdNET can identify 
both gray wolves and coyotes in PAM data, and we iden-
tify persistent challenges to this tool and ways in which 
it may facilitate research on a globally prominent apex 
predator, the gray wolf, and a rapidly expanding mesocar-
nivore, the coyote.

Fig. 1   Gray wolves and coyotes were recorded during passive acous-
tic surveys in the northern Sierra Nevada, USA, in May 2018, and 
were detected with the BirdNET algorithm. At 5:30 (local time), an 
individual coyote and then a pack vocalized close to Unit 1 and was 

recorded 700m away at Unit 2; approximately 20 seconds later, at 
least two wolves were recorded closest to Unit 3. All three spectro-
grams had the same settings

Fig. 2   A pack of coyotes cho-
rused at 3:40 (local time), July 
7, 2018, in the northern Sierra 
Nevada, USA (first 60 s of each 
spectrogram), followed by a 
group of at least three wolves 
(last 40 s of each spectrogram). 
Both species were detected with 
the BirdNET algorithm at Units 
6 and 7. All three spectrograms 
had the same settings
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Methods

We tested BirdNET’s ability to identify wolves and coyotes in 
two audio datasets in which the species were known to occur. 
Both were recorded with the same model of ARU (SwiftOne 
recorder, K. Lisa Yang Center for Conservation Bioacoustics) 
with identical settings (mounted on trees ~ 1.5 m from the 
ground; one omnidirectional microphone; gain =  + 38 dB, 
sample rate = 32 kHz) such that BirdNET scores could be 
directly compared across datasets (the prediction scores made 
by BirdNET and other tools can be sensitive to even minor 
changes in audio characteristics, such as sample rate).

A small proof-of-principle dataset for wolves only was 
recorded via a brief deployment of two ARUs located 
100–600 m from captive wolves at the Wolf Conservation 
Center in New York in 2022, which houses captive gray 
wolves. We manually reviewed 10 h of audio and found 
167 wolf howls (26.9 min total, ranging 2.9 s to 1.9 m) 
from one to five or more individuals.

A second, much larger test dataset was recorded in 
2018, when 200 ARUs were rotated across > 900 locations 
throughout the Lassen National Forest in the northern Sierra 
Nevada, California, USA, from mid-May through mid-
August. Individual deployments lasted approximately 6 days, 
and each site was surveyed on two or three occasions during 
which time the ARU recorded continuously 18:00–10:00 
local time. Deployments were clustered such that groups of 
two or three ARUs were no closer than 500 m, while clusters 
were at least 1.5 km apart (see Wood et al. (2019) for fur-
ther detail). Historical records suggest that wolves may have 
populated most of California prior to Euro-American coloni-
zation (Park 2013), but by the early 1920s wolves were extir-
pated from California (Schmidt 1991). In late 2011, wolves 
naturally returned to northern California from Oregon, and 
by 2022, there were three known packs (California Depart-
ment of Fish and Wildlife 2022). We selected 11 ARUs 
that intersected areas known to be utilized by wolves and in 
which we had already positively identified the vocalizations 
of both wolves and coyotes, and applied BirdNET to the 
10,511 h of audio recorded by those units.

Next, we scanned both audio datasets with the BirdNET 
algorithm. BirdNET is freely available (https://​github.​
com/​kahst/​BirdN​ET-​Analy​zer) and can be executed via 
the command line interface, a graphical user interface, or 
Raven Pro v1.6.5 + (K. Lisa Yang Center for Conservation 
Bioacoustics). We used the command line interface to ana-
lyze our target audio with BirdNET via the “analyze.py” 
script. We used the default sensitivity and overlap settings 
(1.0 and 0, respectively) and a custom species list: Canis 
lupus_Gray Wolf; Canis latrans_Coyote; Dog_Dog. We 
did not expect to encounter domestic dogs in the audio 
because ARUs were not deployed near residential areas, 

so the inclusion of dogs acted as a negative control to 
test whether BirdNET was correctly discerning the three 
canids. BirdNET analyzes audio in 3-s chunks; for each 
such chunk of our 1-h-long input files, it generated a unit-
less “confidence score” prediction ranging from 0 to 1 
for each of the three species on our list. For each input 
audio file, BirdNET generated a corresponding Raven Pro 
selection table containing any predictions that exceeded its 
default minimum threshold of 0.01. After scanning all tar-
get audio, we had one output file for each input audio file.

We reviewed all outputs associated with the 10-h proof-
of-principle audio dataset in order to calculate precision and 
recall. For the 10,511-h Sierra Nevada dataset, we conducted 
a two-step process of reviewing BirdNET results. The more 
robust testing of BirdNET performance related to wolves 
reflects their much more prominent role in North American 
wildlife management.

First, we used the “segments.py” script to randomly select 
BirdNET predictions for each of the three species. We gener-
ated 75 predictions from confidence scores of 0.1 to 1.0 and 
25 predictions from scores of 0.85 to 1.0. We reviewed all 
the randomly selected predictions and classified each as cor-
rect or incorrect. We then used logistic regression to relate 
prediction outcome (correct or incorrect) to BirdNET score 
and tested for a relationship between BirdNET score (con-
fidence score and its original logit scale; see (Wood et al. 
2023a) for further detail).

Second, we began reviewing the BirdNET outputs from 
the Sierra Nevada dataset. We sorted all BirdNET outputs 
(i.e., Raven Pro selection tables formatted as.txt files) by file 
size and began our review with the largest files because file 
size increases with the number of BirdNET predictions (i.e., 
selection boxes) that were within the hours of 3:00–6:00 
local time, which we anecdotally observed to be the local 
peak of wolf vocal activity. If a “large” output file (e.g., > 20 
BirdNET-based wolf predictions) contained predictions with 
a confidence score > 0.90, we used Raven Pro to manually 
output files that high-scoring putative wolf and coyote obser-
vations in the dataset. When we confirmed that a BirdNET 
prediction was indeed a wolf observation (i.e., a true posi-
tive), we manually reviewed 30 min of audio before and 
after any that observation to determine whether any other 
vocalizations had been recorded but had not been correctly 
identified (i.e., a false negative). Additionally, we manually 
reviewed the audio recorded at the same time at adjacent 
ARUs to determine if that vocalization had been recorded 
at multiple units. When a howl was recorded at multiple 
ARUs (and detected there via either BirdNET or manual 
review), we considered the ARU at which the vocalization 
had been recorded with the greatest amplitude to be closest 
to the vocalizing individual. Such an approach can allow for 
approximate triangulation but would not be suitable for true 

https://github.com/kahst/BirdNET-Analyzer
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acoustic localization without source volume estimation and 
synchronizing clocks across ARUs.

Results and discussion

In our 10-h dataset of audio recorded at the wolf sanctuary, 
BirdNET made 258 Gy wolf predictions above a confidence 
score of 0.1; 256 were correct and they correctly identi-
fied 113 of the 167 wolf vocalizations (precision = 0.99, 
recall = 0.68). However, manually validating the randomly 
generated BirdNET predictions from the 10,511-h Sierra 
Nevada dataset (i.e., phase one of our review process) 
revealed quite different performance: there were only four 
true positives out of 150 predictions. Thus, we were unable 
to fit a logistic regression model to the wolf data. BirdNET 
can identify wolves when they are present, but our initial test 
dataset was not an accurate reflection of the acoustic condi-
tions in our larger dataset. However, BirdNET performed 
exceptionally well for coyotes in the Sierra Nevada dataset. 
There was a strong positive relationship between prediction 
score and the probability that a prediction is correct, and 
we found that BirdNET’s original logit scores are a better 
predictor than the confidence scores (AICnull model = 134.8; 
AICconfidence score model = 103.5; AIClogit score model = 101.9). 
BirdNET could identify coyotes in our dataset with a < 1% 
chance of a false positive at high score thresholds (Fig. 3). 
Finally, as expected, domestic dogs were absent from our 
audio dataset. An absence of true positives meant that we 
could not fit a logistic regression model; scores were over-
whelmingly low (there were only two predictions above a 
confidence score of 0.85, and both were false positives). 
Differential classification performance across species is 
expected, so direct interspecific comparisons must be made 
judiciously (Wood et al. 2023b). For example, acoustic co-
occurrence may be feasible but comparing vocal activity 
rates may not be.

Long-duration, low-frequency signals such as wolf howls 
may be intrinsically difficult to detect with high precision 
using BirdNET. First, BirdNET analyzes audio in 3-s chunks 
to optimize the identification of short-duration bird vocaliza-
tions (Kahl et al. 2021); consequently, long-duration signals 
will be broken into clusters of consecutive predictions, many 
of which may have similar scores. Thus, when conducting 
a manual review of the Sierra Nevada outputs (described 
below), we prioritized clustered predictions for review. 
However, second, low-frequency signals are subject to more 
interference than higher-frequency signals, and a variety of 
high-amplitude, low-frequency sounds may degrade such 
that they begin to resemble the relatively simple signature 
of a wolf howl (e.g., Fig. 2, bottom spectrogram). Thus, a 
cluster of high-scoring predictions is insufficient to deter-
mine wolf presence without verification. Indeed, our review 

of the Sierra Nevada dataset revealed that misclassifications 
(false positives) were dominated by geophony (wind) and 
anthrophony (train horns), both of which are, like wolf 
howls, long-duration sounds relative to BirdNET’s 3-s analy-
sis window. Despite these challenges, we believe BirdNET 
can be a viable tool for wolf research and especially for 
coyote research. Careful post-processing (e.g., prioritizing 
for review the outputs with many wolf predictions recorded 
during likely periods of vocal activity, as we did) is likely to 
be necessary for an effective application of BirdNET to wolf 
bioacoustics. Another possibility is using a newly developed 
feature of BirdNET, the ability to train a custom detector, 
to develop bespoke wolf detectors that can take advantage 
of project-specific training data (see (Ghani et al. 2023) and 
https://​github.​com/​kahst/​BirdN​ET-​Analy​zer#5-​train​ing).

Extensive manual review of the Sierra Nevada dataset 
(105 of the 10,511 h we scanned) revealed that BirdNET 
correctly identified numerous wolf and coyote vocalizations, 
enabling us to generate coarse-resolution location data for 
both species and to identify likely wolf-wolf and wolf-coyote 
acoustic interactions. (The near-total absence of correct wolf 
predictions in the randomly selected predictions generated 
by “segments.py” suggests that false positives vastly out-
number true positives in that particular dataset.) Below, we 
highlight two events that involve multiple putative acoustic 
interactions of wolves and coyotes. Unless otherwise noted, 
all vocalizations were detected by BirdNET. Within the 

Fig. 3   BirdNET could identify coyotes with > 95% accuracy based on 
logistic regression (green curve) that related the manually confirmed 
outcome of 150 randomly selected predictions (gray dots) as correct 
(top row) or incorrect (bottom row). BirdNET scores were back trans-
formed from unitless “confidence scores” to their original logit scores

https://github.com/kahst/BirdNET-Analyzer#5-training
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audio we manually reviewed, observed recall for both spe-
cies was high, with false negatives predominantly extremely 
distant (i.e., low-amplitude) vocalizations.

Wolf‑coyote pack interaction

Shortly before dawn on May 18th, wolves and coyotes 
were recorded across four ARUs (Units 1–4) deployed 
700–4500 m apart over a 32-min period (Fig. 1). At 5:05 
local time, a wolf howled three times and was recorded (and 
detected) at Units 1 and 3. It was closest to Unit 3 and was 
not recorded at Unit 2 (complex local topography and dense 
forest may have caused this ARU not to record these and 
other vocalizations). Twenty-five seconds later, two coyotes 
were detected at Unit 1; manual review revealed that they 
were recorded faintly 700 m and 4500 m southwest at Units 
2 and 4, respectively, but not at Unit 3. Ten seconds after 
the coyotes began vocalizing, multiple wolves began howl-
ing. Both species were correctly identified at Unit 1, but the 
wolves were still closer to Unit 3, and howled intermittently 
for several more minutes.

At 5:30, after 19 min during which no vocalizations were 
recorded at any of the six ARUs in the area, one coyote and 
then a pack howled near Unit 1 (Fig. 1, top spectrogram). 
The chorus was also detected at Unit 2 (Fig. 1, middle spec-
trogram); it was recorded but not detected at Units 3 and 4. 
Ten seconds later, at least two wolves howled close to Unit 3 
(Fig. 1, bottom spectrogram), though it was recorded faintly 
at Unit 1 as well (Fig. 1, far right of the top spectrogram).

Wolf‑coyote and wolf‑wolf interactions

During the night of 7 July approximately 18 km from the 
previous vocal interactions, vocalizations of wolves and 
coyotes were recorded at three ARUs (Units 5–7) deployed 
650–1400 m apart (Fig. 2). From 3:12 to 3:14 local time, a 
wolf was recorded howling intermittently close to Unit 7 and 
more faintly 650 m northeast at Unit 6. Six minutes later, 
two wolves were recorded howling for 40 s at Unit 6 and, 
more faintly, at Unit 5. In the audio recorded at both ARUs, 
the amplitude of both individual’s vocalizations was simi-
lar, suggesting that both wolves may have been in roughly 
the same location. Howling is often employed by canids to 
regroup, and it is possible that the two vocally active wolves 
close to Unit 6 were responding to one vocally active wolf 
closer to Unit 7. It is also possible that the wolf initially 
recorded closer to Unit 7 than 6 was one of two that was 
recorded 6 min later closer to Unit 6 than 7, but the sub-
sequent recordings revealed that the minimum wolf group 
size was three.

After 20  min during which no vocalizations were 
recorded, a 50-s coyote chorus was detected close to Unit 
7, much more faintly at Unit 6, and manually identified at 

Unit 5 (Fig. 2). Ten seconds later, at least three wolves were 
recorded chorusing for 45 s close to Unit 6 and faintly at 
Unit 7 (Fig. 2). The amplitude of all three wolf howls was 
nearly identical at both ARUs, suggesting that each indi-
vidual was the same distance from both ARUs (i.e., all three 
were in the same location).

Implications for wolf and coyote research

Bioacoustics has a long history in wolf and coyote research, 
and PAM can be a cost-effective and noninvasive wolf sur-
vey technique method that yields detection probabilities that 
are equivalent to or greater than those achieved by cam-
era trapping (Garland et al. 2020). The many challenges to 
surveying these wide-ranging predators incentivize further 
improvement to canid-oriented PAM techniques (Blanco and 
Cortés 2012; Suter et al. 2017). It is comparatively easy to 
collect many thousands of hours of audio data; identifying 
sounds of interest is a major bottleneck. We have shown 
that a freely available machine learning tool with graphi-
cal user interface (GUI) and command line implementation 
options, BirdNET ((Kahl et al. 2021); https://​github.​com/​
kahst/​BirdN​ET-​Analy​zer), can correctly identify wolf and 
coyote vocalizations. Thus, PAM and BirdNET can facilitate 
the fundamental task of assessing the distribution of either 
or both species across the landscape.

Yet far more information that species’ distributions may 
be attainable. Efficient identification of wolf or coyote vocal-
izations can facilitate estimates of group size (Passilongo 
et al. 2015) and may be helpful in identifying individuals 
(Larsen et al. 2022). Because wolf and coyote pups make 
distinctive sounds, researchers could also use PAM to iden-
tify demographically critical events like successful reproduc-
tion. BirdNET’s feature embeddings, a pre-species classifi-
cation layer of information accessible via the “embeddings.
py” script, has been successfully used to identify reproduc-
tive events in owls and to search for distinctive sounds in 
large datasets (McGinn et al. 2023). Finally, it may be fruit-
ful to explore interspecific interactions.

In both of our case studies, it is plausible to infer call-
response dynamics both within and between species. In case 
one, a wolf appears to elicit a coyote chorus which elicits 
further wolf vocalizations, and, later, one coyote appears to 
initiate a group chorus, which again elicits a wolf chorus. In 
case two, vocalizations appear to have facilitated one wolf 
apparently joining two others; that group then appears to 
respond together to a nearby group of coyotes (Fig. 2, middle 
and bottom spectrograms). Wolf populations suppress coyote 
populations (Levi and Wilmers 2012), with the former spe-
cies competitively dominant in most contexts (Merkle et al. 
2009) leading to spatial segregation between species in areas 
of sympatry (Benson and Patterson 2013). Where wolves 
have returned to their former range, violent interactions with 

https://github.com/kahst/BirdNET-Analyzer
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coyotes tended to decrease over time (Merkle et al. 2009), 
suggesting complex behavioral dynamics that could be elu-
cidated at least in part via passive observation of their vocal 
communication. The behavioral ecology of these putative 
interspecific interactions may be particularly important in 
the context of wolf recolonization and reintroduction across 
western North America and hemisphere-scale coyote expan-
sions (Hody and Kays 2018).

BirdNET’s ability to accurately and efficiently identify 
coyote vocalizations suggests that it can be immediately 
applied at scale for this species; as noted above, further work 
is necessary to apply BirdNET efficiently to wolf ecology. 
Both gray wolves and coyotes have continental distribu-
tions and are involved in a diverse range of conservation 
and management challenges; BirdNET may help facilitate 
more effective research and conservation of these species by 
making scalable passive acoustic surveys a viable approach.
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